A apresentação já vai começar....

Uma "nova" visão sobre a persistência de dados

Eder Ignatowicz

Eder Ignatowicz...

Abaixo ao Banco de Dados Relacional

Abaixo ao Banco de Dados Relacional como bala de PRATA!

Falando sério....

Not Only SQL

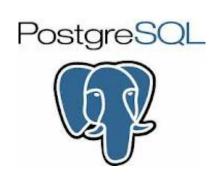
Not Only SQL

Not Only SQL

Uma **nova** escola

Mas professor? Qual o problema com o Banco de Dados Relacional?

Solução madura



A melhor solução para 90,02%* dos teus problemas de persistência

Componentes computacionais localizados em regiões físicas distintas que trocam mensagens

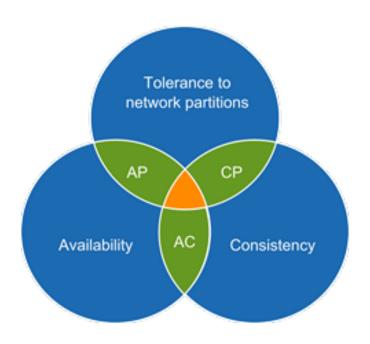
Possuem três características desejadas:

Possuem três características desejadas:

Consistência: validade, precisão e integridade da informação compartilhada entre diversos nós

Possuem três características desejadas:

Disponibilidade: garantia que todas as requisições recebam uma resposta adequada, ou seja, quando uma falha ocorrer, o repositório deverá manter-se em funcionamento;



Possuem três características desejadas:

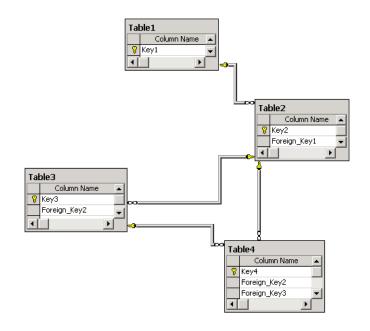
Tolerância a particionamentos: se ocorrer uma falha de rede que divida os nós em dois grupos que não conversam mais entre si, o repositório deve possibilitar acesso e processamento nos dois subgrupos.

É impossível obter as três características ao mesmo tempo

Trade-off

CA **sem** o P: Sistemas que provêem transações distribuídas, somente podem garantir este serviço se não ocorrer particionamento do servidores;

CP **sem** A: No caso de um particionamento, as transações serão bloqueadas até a recuperação do sistema com objetivo de evitar eventuais conflitos de dados (o que provocaria uma inconsistência);



AP **sem** C: É aceitado que parte dos nós eventualmente estejam em determinado momento em um estado inconsistente.

Mas professor? E o Banco Relacional com isto?

Facilitaram a vida dos desenvolvedores...

Facilitaram a vida dos desenvolvedores...

SGBD é responsável pela verificação e garantias de integridade dos dados, controle de concorrência, recuperação de falhas e segurança para os SGBDs

ACID
(Atomicity, Consistency, Isolation, Durability)

ACID Atomicity

Transação deve ser executada por completo ou não ser executada

A**C**ID Consistency

Toda transação deve garantir a integridade do banco de dados

ACID

Isolation

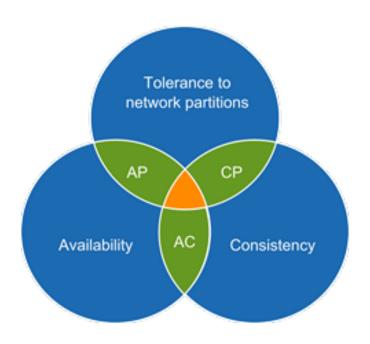
Mesmo que as ações de diversas transações sejam executadas de forma intercalada, o resultado dessas execuções deve ser idêntico

ACI**D**Durability

SGBD relacional deve assegurar que o efeito de transações persista, mesmo que o sistema falhe.

Ou em Sistemas Distribuídos...

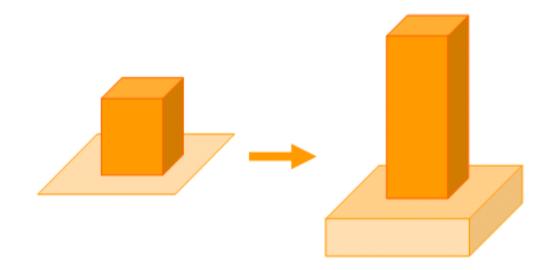
Durability trata de garantir que dados que foram "comitados" sejam persistentes em uma única máquina e que esses dados sejam replicados em um determinado número de máquinas ou em diferentes centros de dados.


Consistência Absoluta

Isto implica em detrimento da tolerância a particionamentos em favor da consistência e disponibilidade (CA sem o P)

Teorema CAP

É impossível obter as três características ao mesmo tempo



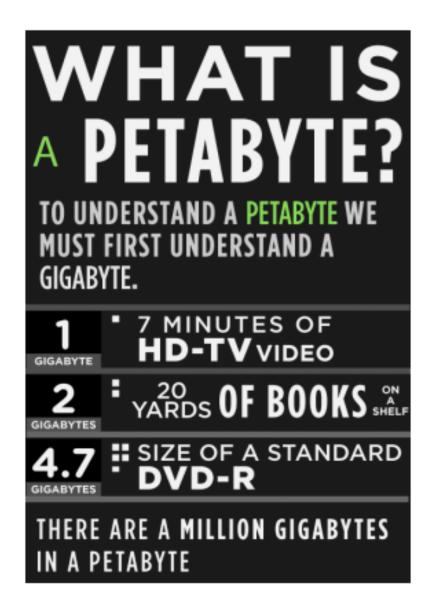
Mas professor? O que acontece se eu não tenho tolerância a particionamentos?

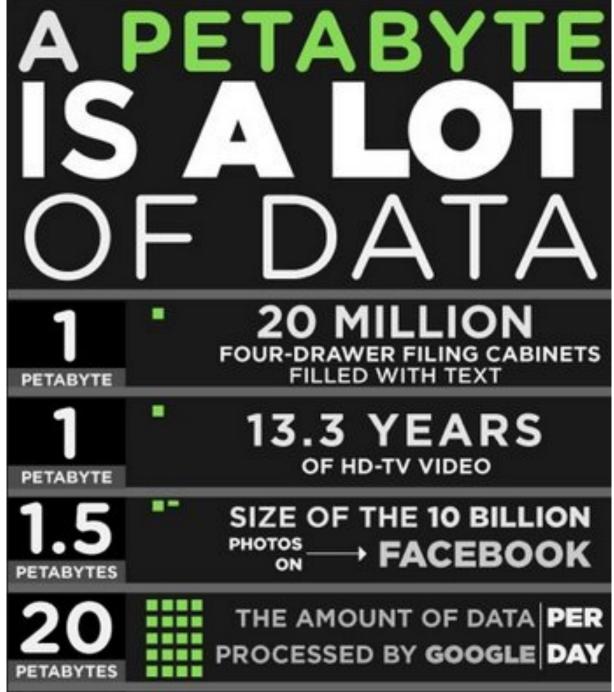
Escalabilidade Vertical

Ah professor, ai que estão 90,02% dos sistemas

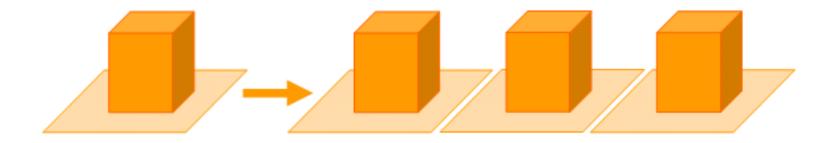
Mas...

Evolução da Internet



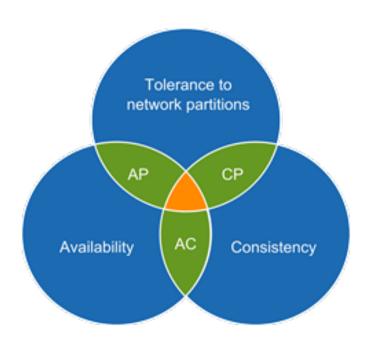


Era dos Petabytes

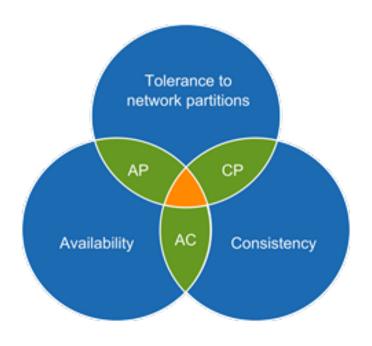


20 PETABYTES/ DIA

Escalabilidade Horizontal


é Pré-Requisito

Teorema CAP


Preciso ter tolerância a particionamentos

Teorema CAP

Preciso exercitar o tradeoff de maneiras diferentes

Outros problemas...

Como unir tabelas (join) em um sistema distribuído?

Capacidade de lidar com diferenças sintáticas, estruturais e semânticas dos dados

Todos os dados necessitam serem convertidos em tabelas.

Este modelo convertido é por vezes complexo e ineficiente.

SQL só é eficiente para dados estruturados

Novo Paragidma

BASE

(Basically Available, Soft state, Eventual consistency)

Novo Paragidma

BASE

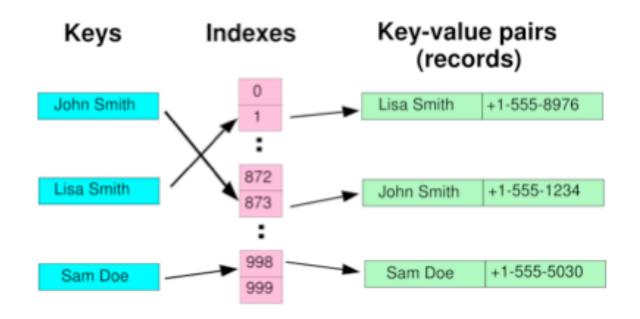
Eventual consistency

Novo Paragidma

BASE

Em um sistema distribuído é fato que não podemos conseguir consistência absoluta em sistemas distribuídos escaláveis

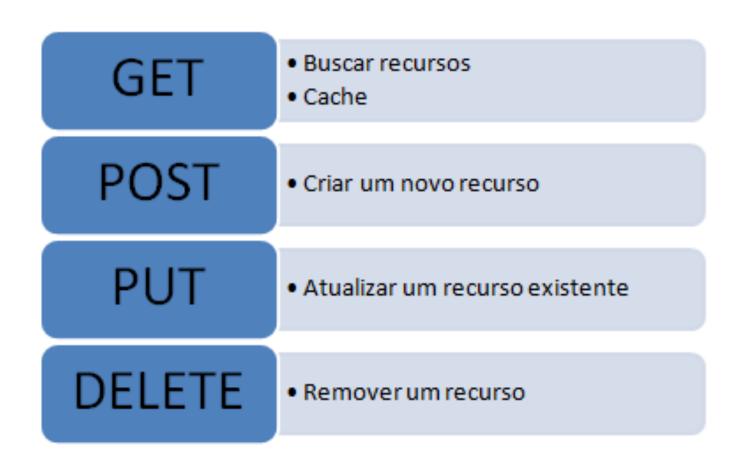
Estrutura de dados


Desnormalização

Membros da Família

Key-value stores

Key-value stores


RESTful Web Services

REpresentational **S**tate **T**ransfer (REST)

Baseia-se e utiliza os métodos HTTP

Interface Uniforme e Padrão


```
$ curl -i -X POST http://localhost:8091/riak/animals \
-H "Content-Type: application/json" \
-d '{"nickname" : "Sergeant Stubby", "breed" : "Terrier"}'
```

HTTP/1.1 201 Created Vary: Accept-Encoding

Server: MochiWeb/1.1 WebMachine/1.7.3 (participate in the frantic)

Location: /riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3P0

Date: Tue, 05 Apr 2011 07:45:33 GMT

Content-Type: application/json

Content-Length: 0

\$ curl http://localhost:8091/riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3P0

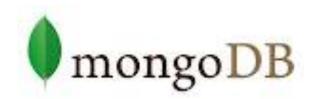
\$ curl -i -X DELETE http://localhost:8091/riak/animals/6VZc2o7zKxq2B34kJrm1S0ma3P0

BigTable Clones (Column Family)

Row Key	Time Stamp	Column Family : Basic			Basic	Column Family : History	Column Family : Education				Column Family : Address				
		Name	DOB	Photo	Start Date	Job Title	High School	Bachelor	Masters	Door	Street	City	State	Zip	
1	T1	John	DD/MM/YY	YY	DD/MM/YY				. /	4	- 11	8 -			
1	T3		Maria Value			Sr. System Analyst									
1	T2					Analyst		3-1				22 22		3	
1	T2					Programmer	- 1					70 N			
1	T1						Science	5	.)			5 5			
1	T1							Computers							
1	T1									XX	XX	XX	XX	53353	

BigTable Clones (Column Family)

BigTable Clones (Column Family)


	row keys	column family "color"	column family "shape"	
LOM	"first"	"red": "#F00" "blue": "#00F" "yellow": "#FF0"	"square": "4"	· · · · · · · · · · · · · · · · · · ·
LOM	"second"		"triangle": "3" "square": "4"	

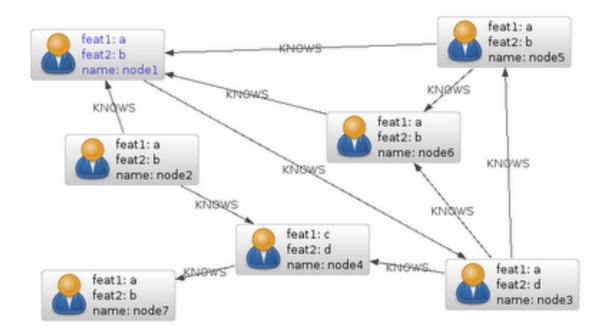
Document Databases

```
"nickname" : "kimchy",
    "name" : {
        "firstName" : "Shay",
        "lastName" : "Banon"
},
    "birthdate" : "1977-11-15",
    "projects" : [
        "compass",
        "elasticsearch"
],
    "wowLevel" : 3,
    "wowLevelFine" : 3.14
```



```
$ curl http://localhost:5984/music/
{
   "db_name":"music",
   "doc_count":1,
   "doc_del_count":0,
   "update_seq":4,

"purge_seq":0,
   "compact_running":false,
   "disk_size":16473,
   "instance_start_time":"1326845777510067",
   "disk_format_version":5,
   "committed_update_seq":4
}
```

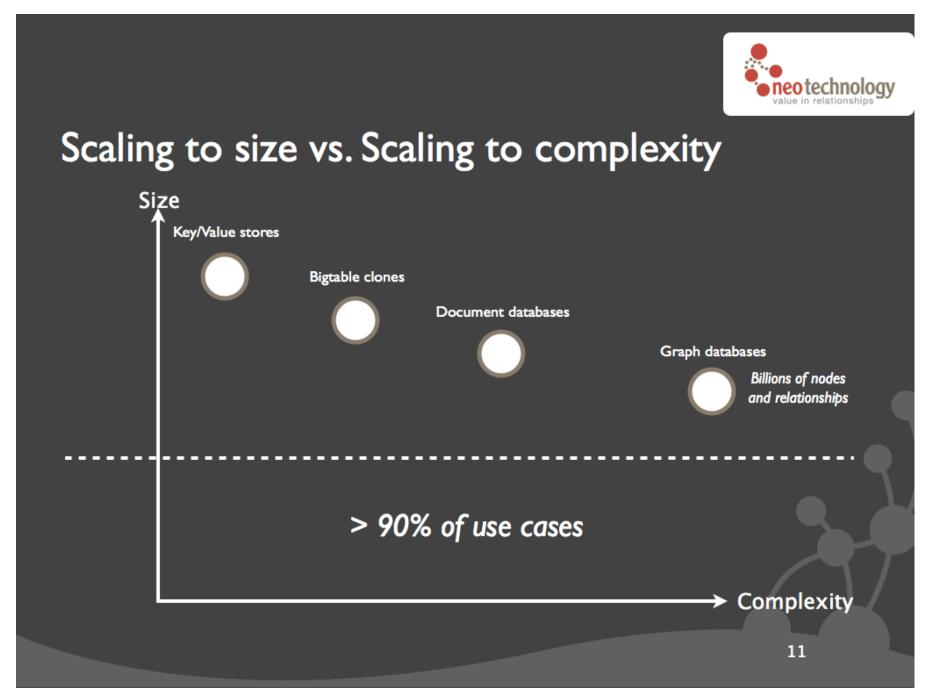


```
$ curl -i -X PUT \
  "http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b" \
  -H "Content-Type: application/json" \
  -d '{
    " id": "74c7a8d2a8548c8b97da748f43000f1b",
    " rev": "1-2fe1dd1911153eb9df8460747dfe75a0",
    "name": "Wings",
    "albums": ["Wild Life", "Band on the Run", "London Town"]
  }'
HTTP/1.1 201 Created
Server: CouchDB/1.1.1 (Erlang OTP/R14B03)
Location: http://localhost:5984/music/74c7a8d2a8548c8b97da748f43000f1b
Etag: "2-17e4ce41cd33d6a38f04a8452d5a860b"
Date: Wed, 18 Jan 2012 00:43:39 GMT
Content-Type: text/plain; charset=utf-8
Content-Length: 95
Cache-Control: must-revalidate
  "ok":true,
  "id": "74c7a8d2a8548c8b97da748f43000f1b",
  "rev": "2-17e4ce41cd33d6a38f04a8452d5a860b"
```



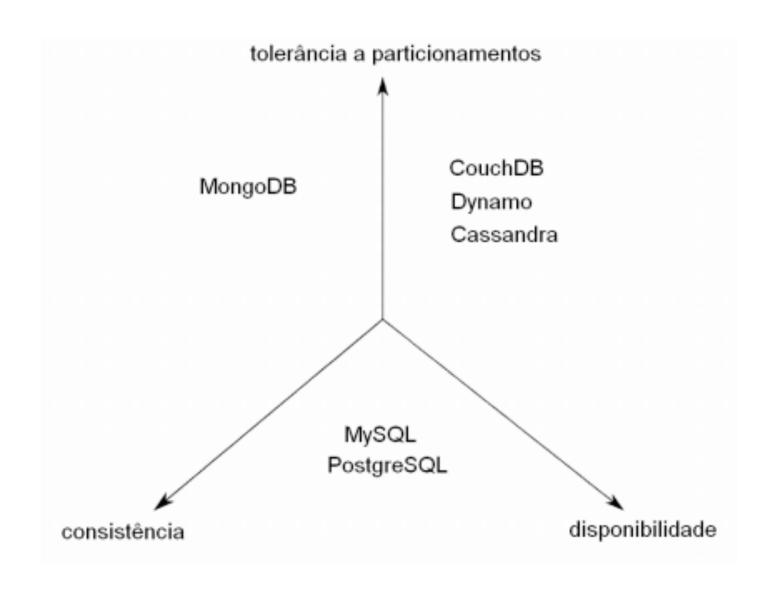
```
$ curl http://localhost:5984/music/_design/artists/_view/by_name?\
limit=5\&startkey=%22C%22
{"total_rows":100, "offset":16, "rows":[
{"id":"340296", "key":"CalexB", "value":"340296"},
{"id":"353888", "key":"carsten may", "value":"353888"},
{"id":"272", "key":"Chroma", "value":"272"},
{"id":"351138", "key":"Compartir D\u00f3na Gustet", "value":"351138"},
{"id":"364714", "key":"Daringer", "value":"364714"}
```


Graph Databases (Social)

Graph Databases (Social)


Graph Databases (Social)

```
gremlin> spatlese = g.addVertex([name : 'Prancing Wolf Spatlese 2007'])
==> v[5]
gremlin> g.addEdge(pwolf, spatlese, 'produced')
==> e[4][3-produced->5]
```



Visão Geral

SQL

padrões

durabilidade

dsl comum

triggers

chave estrangeira

chave composta

transação

2 phase commit

relacional

NoSQL

flexibilidade grafos

9.4.0

k-v store

documento

escalabilidade

commodity hard.

RAM

distributed

api`s

SQL

padrões

durabilidade

dsl comum

triggers

chave estrangeira

chave composta

transação

2 phase commit

relacional

NoSQL

flexibilidade grafos

k-v store

documento

escalabilidade

commodity hard.

RAM

distributed

api`s

Building Your Big Data Future with Open Source

NoSQL, NewSQL and Beyond Document NewSQL ScaleDB Drizzle CouchDB NoSQL VoltDB MongoDB -as-a-Service Amazon RDS Kev value **HandlerSocket** App Engine base SQL Azure Cloudant Akiban Riak Clustrix RavenDB Redis Datastore Database.com MySQL Cluster Membrain Xeround **FathomDB SimpleDB** Big tables ScalArc GenieDB Cassandra HBase Graph Continuent ScaleBase Voldemort Schooner MySQL Hypertable CodeFutures Neo4J GraphDB BerkeleyDB InfiniteGraph NimbusDB Translattice Data Grid/Cache Memcached GridGain GigaSpaces InfiniSpan ScaleOut IBM eXtreme Scale Vmware GemFire Terracotta Oracle Coherence CloudTran © 2011 by The 451 Group. All rights reserved

