
Lessons learned after 18 months
of Micro Frontends adoption in a
large scale application

1

Eder Ignatowicz
Principal Software Engineer

@ederign

Alex Porcelli
Senior Principal Software Engineer

@porcelli

KIE Tooling - Business Automation

2

3

4

5

6

7

How to adapt a 10 years old legacy
to modern web development?

8

From a handful of engineers to
6 different fullstack teams working
independently on different fronts
on this new initiative?

9

How to breakup my frontend
monolith into many smaller
manageable pieces?

10

Micro frontends

11

The Multiplying Architecture

"An architectural style where
independently deliverable frontend
applications are composed into a
greater whole"

12

Cam Jackson
https://martinfowler.com/articles/micro-frontends.html

B
enefits

Incremental upgrades
Simple, decoupled codebases
Each micro frontend can run as standalone
Independent deployment and releases
Autonomous Teams

13

Exam
ple

14

15

Container

Micro
frontend B

Micro
frontend C

Micro
frontend B

Decides when/where to show
each Micro frontend

BFF A BFF B BFF C

No Micro frontend
communicate

 directly to each other

Kafka, Datastore etc...

16

aka client-side integration:

After the container gets loaded in the browser, it gets

access to micro front end source code

Pros: A can be deployed independently at any time

and can deploy different versions of it, and Container

can decide which one to use

Cons: tooling + setup is far more complicated

Independent deployment makes it challenging to

test/verify (build a good test suite for it)

Run-Time integration

Types of Integration
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as
https://mydomain.com/c.js

User navigates to
https://mydomain.com

Container app is loaded

Container apps fetches new
C from

https://mydomain.com/c.js

17

aka compile-time integration:

Before the container gets loaded in the

browser, it gets access to micro frontend

source code;

Foreign modules are accessible during build

Pros: Easy to setup and understand

Cons: Container has to be re-deployed every

time child has updated and tempting to

tightly coupled Container + child together;

Build-time integration

Types of Integration
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

B
uild-tim

e integration

18

19

Autonomous teams

- Each team can run it's micro frontend in isolation

Pros

- Smaller/quickier build;

- Focus just on the problem;

- Less distraction, noise

Cons

- Bugs can appear just on container app

- Hard to run the complete experience;

- Hard to debug problems across entire system;

- Incoherent experiences;

- Our project:

- Tricky issues can appears only on production

Another concerns - Autonomous Teams

Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

20

What you should do:

- Custom CSS from your project:

- Use CSS-in-JS library

- Use frameworks built-in component style

scoping

- Vue's and Angular has good ones

- "Namespace" all your CSS

- CSS coming from other libraries

- Use a component library that does css-in-js

- Manually build the css library and apply

namespacing techniques to it

- Scope-it

- Shadow DOM or iframes!

Another concerns - Styling
Team A decides to develop a
new version of Component C

Ready! Let's deploy it

Publishes C as NPM package

NPM Registry
[C]

Team B decides to upgrade C
so install a new dependency

Team B builds a new
Container with new C

Team B deploys a new
Container with new C

21

- Nothing new, exciting, even a bit of 'yuck"

- Pros

- Great degree of isolation;

- Styling

- Global variables

- Shadow DOM was not a option in 2019

- Some libraries play directly with body of the page

- We only use it when necessary

- Cons:

- Makes your app feel 'old'

- Less flexible than other options

- Hard to integrate routing, history;

- Challenging to make the app responsive

- Not Content-Security-Policy friendly

- Harder to make apps communicate

Context Isolation via iframes

22
Example extracted from https://martinfowler.com/articles/micro-frontends.html

23

24

25

26

Can I have the
editors there? :)

Can I've my editor here?

27

Can I also have the
editors here? :)

28

Can I have the
editors there? :)

Did I mention here?

29

Can I have the
editors there? :)

And here :)

Introducing
Multiplying Architecture

30

Online Channel

VSCode Channel

VSCode Channel

Channel (VS Code, Desktop, Github, Browser, …)

Components Interaction

34

Envelope (iframe or div)

MyChannel

Implements:
Channel,
MyServiceApi

Consumes:
MyEnvelopeApi

MyEditor

Implements:
Editor

Consumes:
MyServiceApi

MyEnvelope

Defines:
MyEnvelopeApi
MyServiceApi

Implements:
MyEnvelopeApi

Consumes:
Editor

35

O
ptional section m

arker or title More on:
Google for
"Kie Live multiplying
architecture"

36

https://twitter.com/housecor/status/1139504822930092033/photo/1

Micro frontend Spectrum

Total independence Strategic collaboration

Each team chooses tech stack

Each micro frontend makes it's own API calls

App is composed of fully functional micro

apps

Each micro frontend has it's own CI/CD

Agrees on tech stack

Container handles all API calls

Share 'dumb' components

Shared CI/CD

Where we are going?

37

38

Build-time issues

- Foreign modules are accessible during build

- Container has to be re-deployed every time child

has updated and tempting to tightly coupled

Container + child together;

- One single change to prod. requires full a long

rebuild

- Dependency versions alignment

- No clear app/team isolation

- Duplication of library loading

Built time x Runtime Integration

39

Container

Micro
frontend A

Micro
frontend C

Micro
frontend B

Container fetches
microfront-ends

React 17.0.1 React 17.0.1 React 17.0.1

http://domain/a.js http://domain/c.js

40

Container App

Micro
frontend A

Micro
frontend C

Micro
frontend B

React 17.0.1 React 17.0.1 React 17.0.1

Federated Modules
to the Rescue!

41

Federated M
odules

● Part of Webpack 5
● Allows loading separately compiled programs parts
● Solution for runtime integration of Micro frontends?
● Allow referencing program parts that are not yet known at

compile time.
● Each micro frontend can run in isolation

42

43

Container

App A

libs = .., React
17.0.1

Exposing @ domain/8000

Exporting
remote modules

A

Import remote
modules
A, B, C...

App B

libs = .., React
17.0.1

Exporting
remote modules

A

Exposing @ domain/8000 RUNTIME
IMPORTS! Exposing @ domain/8002

44

45

-> Import of Federated Modules

-> Lazy loading via Route

46

-> ModuleFederation Plugin

-> Remote Routes

47

48

-> ModuleFederation Plugin

-> Exposed routes
(used by Container)

49

50

51

Auth micro front-end running as fed. module (8080) Auth micro front-end running isolated (8082)

Where is react?

52

-> shared dependencies

53
https://github.com/sokra/slides/blob/master/content/ModuleFederationWebpack5.md

54

Pros in our case

- Microservices architecture

- Able to finally take advantage of runtime integration

- Each team can build/deploy their own micro frontend

- No duplication of library loading

- Ability to deploy multiple pieces of your application to

different servers without iframes

- Have a portion of an application getting too big and

wants a dedicated team? Split it out.

- That split you just made was a bad idea? Merge it back

together.

- Finally we are able to real decoupling.

- Be able to evolve tech stack independently

Federated Modules

55

Possible Con's for us

- Microservices architecture

- Distributed systems are hard

- Bleeding edge technology

- Complexity of deployment

- If you don’t have a pretty solid CI/CD this will

probably be a foot-gun for you

- Requires unbreakable API boundary that everyone agrees

Federated Modules

Good frontend development is
hard.

56

React will not be here forever

57

58

https://twitter.com/housecor/status/1139504822930092033/photo/1

Micro frontend Spectrum

Total independence Strategic collaboration

Each team chooses tech stack

Each micro frontend makes it's own API calls

App is composed of fully functional micro

apps

Each micro frontend has it's own CI/CD

Agrees on tech stack

Container handles all API calls

Share 'dumb' components

Shared CI/CD

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

59

Thank you

Eder Ignatowicz

Principal Software Engineer

@ederign

Alex Porcelli

Senior Principal Software Engineer

@porcelli

