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▸ Bootstrap your understanding of how  a ML Ops platform works under 

the hood;

▸ Understand how people put ML models in production

▸ How  Kubeflow is designed to simplify ML workflows on Kubernetes.

▸ Where the Java developer fits into this picture

▸ How Quarkus, the Kubernetes-native Java framework, is the best way 

to consume 'Kubernetes-based' Machine Learning Models

What are our goals with this talk?
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▸ Data is constantly changing (drift, bias, new patterns).

▸ Models are non-deterministic (outputs vary with training).

▸ Training, tuning, and deployment require heavy compute resources.

▸ Collaboration is harder (data scientists, engineers, ops teams all 

involved).

MLOps (Machine Learning Operations) applies DevOps principles to 

ML, ensuring scalable, reproducible, and automated ML workflows.

ML models are more complex than traditional software because:
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▸ What is a Machine Learning Model?

A model is a program that takes an input (e.g., text, image, or 

data) and produces an output (e.g., classification, prediction)

In fraud detection, a model predicts whether a transaction is 

fraudulent or legitimate based on past data 

Some key prerequisites before diving into the ML lifecycle
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▸ What is Inference?

Inference is the process of using a trained model to make 

predictions on new data. 

In Java terms, it’s like calling a pre-trained function to get a result.

Some key prerequisites before diving into the ML lifecycle
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▸ What is a Feature?

A feature is a measurable property used as input for the model.

In fraud detection, common features include:

● Transaction amount (higher amounts might indicate fraud).

● Location (transaction from an unusual country).

● Number of transactions in the last hour (high frequency 

could be suspicious).

Some key prerequisites before diving into the ML lifecycle
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▸ What are Parameters and Hyperparameters?

Parameters  are internal variables of a model learned during 

training by the model to make predictions.

Hyperparameters are manually set configurations that affect 

how the model learns.

Some key prerequisites before diving into the ML lifecycle
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▸ What is Model Training?

Training is the process of feeding historical fraud data to the 

model so it learns patterns.

Uses labeled data:

✅ Legitimate transactions

❌ Fraudulent transactions

The model adjusts parameters to minimize wrong predictions.

Some key prerequisites before diving into the ML lifecycle
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▸ What is Model Serving?

Model serving is deploying a trained model to handle live 

transactions.

The model is exposed as an API or integrated into a real-time 

system.

Some key prerequisites before diving into the ML lifecycle
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▸ What is the Model Registry?

A Model Registry stores and tracks different versions of trained 

models.

Helps in versioning, auditing, and rollback of models.

Some key prerequisites before diving into the ML lifecycle
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▸ Kubeflow is a community and ecosystem of open-source projects to 

address each stage in the machine learning (ML) lifecycle with 

support for best-in-class open source tools and frameworks.

▸ Kubeflow makes AI/ML on Kubernetes simple, portable, and scalable.

What is Kubeflow?
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Red Hat’s AI/ML engineering is 100% open source

Upstream projects ProductCommunity projects
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ML Lifecycle for Production and Development Phases
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Kubeflow Notebooks

Kubeflow Notebooks provide interactive, containerized 
development environments within Kubernetes.

- They primarily support Jupyter Notebooks, but also work with 
RStudio and VS Code.

- Enable ML model development, data exploration, and pipeline 
creation directly inside Kubernetes.
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apiVersion: kubeflow.org/v1
kind: Notebook
metadata:
  name: my-kubeflow-notebook
  namespace: my-namespace  
spec:
  template:
    spec:
      serviceAccountName: kubeflow-notebook   
      containers:
        - name: notebook-container
          image: quay.io/jupyter/minimal-notebook   
          workingDir: /home/jovyan
          command:
            - "start-notebook.sh"
          resources:
            requests:
              cpu: "2"
              memory: "4Gi"
            limits:
              cpu: "4"
              memory: "8Gi"
          volumeMounts:
            - name: workspace
              mountPath: /home/jovyan
      volumes:
        - name: workspace
          persistentVolumeClaim:
            claimName: my-notebook-pvc  
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Kubeflow Pipelines

Kubeflow Pipelines (KFP) help orchestrate, automate, and manage ML workflows in Kubernetes.

- They define ML tasks as a Directed Acyclic Graph (DAG), ensuring step-by-step reproducible execution.
- Each step (data processing, training, evaluation, deployment) runs in containerized microservices.
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from kfp import dsl

@dsl.component
def say_hello(name: str) -> str:
    hello_text = f'Hello, {name}!'
    print(hello_text)
    return hello_text

@dsl.pipeline
def hello_pipeline(recipient: str) -> str:
    hello_task = say_hello(name=recipient)
    return hello_task.output
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https://github.com/harshad16/data-science-pipeline-example/tree/master/run-
pipelines-on-data-science-pipelines 
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https://github.com/harshad16/data-science-pipeline-example/tree/master/run-
pipelines-on-data-science-pipelines 
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https://github.com/harshad16/data-science-pipeline-example/tree/master/run-
pipelines-on-data-science-pipelines 



Update confidential designator here

Version number here V00000

34

Source:
Insert source data here
Insert source data here

KServe



Update confidential designator here

Version number here V00000

35

Source:
Insert source data here
Insert source data here

KServe

apiVersion: 
serving.kserve.io/v1beta1
kind: InferenceService
metadata:
  name: sklearn-iris
spec:
  predictor:
    model:
      modelFormat:
        name: sklearn
      storageUri: 

'gs://kfserving-examples/models

/sklearn/1.0/model'
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EDGE TO CORE DATA PIPELINES FOR AI/ML

Demo Kubeflow 
Fraud Detection

https://ai-on-openshift.io/demos/financial-fraud-detection/financial-fraud
-detection/ 
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ML Lifecycle for Production and Development Phases



Update confidential designator here

Version number here V00000

QUARKUS.IO

Why Quarkus?
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Modern Java Stack

Cloud Native (Micro)Services Serverless
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Modern Java Stack

Cloud Native (Micro)Services Serverless

It’s perfectly fine for Monoliths too :-)
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Traditional vs. Quarkus

Build Time Runtime

RuntimeBuild Time
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Native Compilation

Build Time

Native Executable

JVM
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On the shoulders of Giants

et al.
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Demo Quarkus 
Fraud Detection
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Quarkus & 
Langchain4j
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▸ Unified APIs: LLMs providers and embedding stores use proprietary 

APIs. LangChain4j abstracts them for you;

▸ Ready-to-use: prompt templating, memory management, agents, 

RAGs, etc; you have interfaces and implementations so you can get 

things done quickly;

▸ 4j: because Java is fun! :-)

Langchain4j
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Demo Quarkus & Langchain4j
Models & Multi-models
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Devops Pipeline
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Kubeflow Pipelines: Reproducible ML Workflow
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linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat
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Thank you


